Uma pesquisa apoiada pela FAPESP e publicada na revista Proceedings of the National Academy of Sciences (PNAS) acrescentou algumas peças ao quebra-cabeça.
“Estudos feitos nos anos 1960 mostraram que, se as proteínas fossem explorar aleatoriamente todas as configurações possíveis até atingir a estrutura nativa, o processo de enovelamento levaria um tempo equivalente à idade do Universo”, disse Vitor Barbanti Pereira Leite, orientador do estudo de doutorado de Ronaldo J. Oliveira, que deu origem ao artigo.
Já se sabia que toda a informação necessária para que o enovelamento ocorresse estava contida na própria sequência de aminoácidos, uma vez que o processo foi passível de ser reproduzido em tubo de ensaio, sem a influência de fatores biológicos. Surgiu então a hipótese de que haveria uma rota que facilitasse a chegada a esse estado funcional
“Passaram-se mais de 20 anos tentando desvendar essas possíveis rotas e identificar os estágios intermediários, até que se percebeu que esse não era o mecanismo”, disse Leite.
Na década de 1990, o brasileiro José Nelson Onuchic – professor da Universidade Rice, em Houston, Estados Unidos, e um dos coautores do artigo recém-publicado na PNAS – introduziu a ideia de que não haveria um caminho único, mas sim um mecanismo em que todos os estágios intermediários levariam à estrutura nativa.
Considerando que em cada uma das configurações alternativas a proteína teria uma determinada energia, Onuchic propôs que, se a energia de todos os estágios intermediários fosse mapeada, esse relevo – conhecido como superfície de energia (energy landscape) – teria um formato afunilado. No fundo do funil estaria a estrutura nativa, que representa o estado mais estável de energia.
“Imagine um cego tentando acertar aleatoriamente a bola no buraco de um campo de golfe. Se o campo fosse plano, ele levaria a vida inteira para acertar. Mas, se o campo tivesse um relevo afunilado, a bola seria direcionada para o centro independentemente do lugar em que fosse lançada”, comparou Leite.
Com a ajuda de modelos computacionais simplificados, Leite e sua equipe conseguiram, pela primeira vez, medir as dimensões do funil de energia – reforçando a teoria proposta por Onuchic. Além disso, com base nas medidas do funil, desenvolveram um parâmetro – batizado de descritor de superfície (Λ) – capaz de indicar a eficiência do processo de enovelamento de cada proteína.
“Para calcular Λ, usamos três diferentes medidas: a rugosidade do relevo de energia, a largura e a profundidade do funil”, contou Leite.
A rugosidade é calculada pela variação de energia que ocorre quando a proteína pula de uma configuração para outra. “Quanto mais rugoso for o relevo, maior será a dificuldade para chegar ao fundo do funil”, disse.
Já a largura varia de acordo com o número de configurações possíveis de serem acessadas pela proteína. “Quanto maior for a entropia do estado desenovelado, ou seja, o número de combinações possíveis quando a proteína está aberta, maior será a área da boca do funil”, explicou Leite.
Por último, a profundidade representa a distância em energia entre a estrutura nativa e o estado totalmente desenovelado. “Medimos o quanto a energia diminui quando a proteína passa do estado desnaturado para o funcional”, contou.
As proteínas foram selecionadas durante o processo evolutivo para funcionar em temperaturas fisiológicas – no caso dos humanos, em torno de 36º C.
“A temperatura tem influência direta sobre todo o sistema. Se aquecermos certas proteínas um pouco acima da temperatura fisiológica, elas começam a se abrir. O relevo de energia continua o mesmo, mas a forma enovelada deixa de ser a mais estável”, explicou Leite.
Os pesquisadores estudaram um grupo de 21 proteínas de diferentes formas e tamanhos e mostraram que o parâmetro Λ tem grande correlação com a estabilidade e com o tempo que a proteína demora para se enovelar.
“A estabilidade e o tempo de enovelamento foram calculados por simulação, mas estão correlacionados com dados experimentais da literatura científica”, disse Leite.
Ponte entre teoria e prática
O trabalho foi desenvolvido no campus de São José do Rio Preto da Universidade Estadual Paulista (Unesp) e contou com a colaboração de pesquisadores da Universidade Rice, em Houston, e da Academia Chinesa de Ciências.
Além de criar uma ponte entre resultados teóricos e experimentais, o estudo aumenta a compreensão sobre o processo de enovelamento de proteínas, o que, segundo Leite, pode ser útil para pesquisadores de diversas áreas, principalmente a da saúde.
“Diversas doenças estão relacionadas ao mau funcionamento de proteínas, como Alzheimer, Parkinson, fibrose cística, fenilcetonúria e câncer. Nessas patologias, não há um agente externo e sim o próprio organismo que, por algum motivo, não consegue manter as proteínas em sua estrutura nativa”, disse Leite.
O conhecimento sobre o processo de enovelamento também pode ser aplicado em áreas como bioenergia. Atualmente, junto ao Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Leite coordena trabalhos de pesquisa com o objetivo de desenvolver enzimas para a fabricação de bioetanol.
Por Karina Toledo
Agência FAPESP